面对世界的复杂性,如何独立思考

为何要保持理性,独立思考?

在互联网的时代,我们每天接收的信息量以指数级别增长。信息量的增多,直接导致了,我们的每天在做决策的时候,选择的增多,如何在决策判断时,保持理性,是我们目前面临的一大问题。

常见的思维决策误区

个人见证的误区

在生活中,亲朋好友的一个推荐都会影响到我们的判断和选择;广告里面的明星效应;朋友圈好友的一个推广产品等等,都在有意无意的触动着我们,很多时候,我们都是无意识的不假思索的就顺从了。
设想一下,一个周五的早上,你在报纸上看到下面这样一个标题:“喷气式客机坠毁,413人死亡。”天啊,你也许会想,多可怕的事故啊!发生了多么糟糕的事情啊!继续设想,在接下来一周的周四,你起床看到报纸写道:“另外一场空难,442人死亡。”“哦,不!”你也许会想,“不要再有任何灾难了,多么可怕啊,我们的空运系统怎么了?
每周在高速公路上死于车祸的人数,相当于一架喷气客机的载员数,但我们对此漠然置之。这是因为“能坐满一架喷气式客机的人死了”这一信息没有通过媒体以一种鲜活的形式传达给我们。因此,每周死于汽车交通事故的350人(加上每周死于摩托车的80人),对我们来说不具有鲜活性。
从心理上说,人们倾向于利用更容易获得的、能够用来解决问题或做出决策的信息。对可获得性造成强烈影响的一个因素,就是信息的鲜活性。问题在于,再没有比发自内心的个人见证更鲜活、更引人注目的了,这都是一些已经发生的事或者是真实的事。个人见证的鲜活性常常令其他一些更可靠的信息黯然失色。
这就是个人见证的带来的信息鲜活性,我们从心理上就会下意识的感受到真实。媒体制造的鲜活性效应,使得我们的风险认知发生了紊乱。
从逻辑的角度来思索的话,一个用户的推荐并不能代表所有人就喜欢,而很多时候,我们只看到了分子的力量,而忽略的分母的成分,这就是逻辑上的以偏概全。或者我们并没有考虑到上述的推荐都是站在对方的角度,给出的个人感受,而自己与对方是有区别和差异的。

没有又会怎么样?

在生活中,也会看到一些广告,某某某用了某个药品,身体恢复了等等等,诸如此类的形式进行推广。你会发现,在这些报道中,我们常常忽略的是控制条件,也就是说,如果没有这些干预,情况又会是怎样的呢? 最终身体的恢复或者达到的某种效果,是药物起到的作用?还是心理产生的虚假反应?是否有对照组做控制试验? 而这些统统不提,没有这种药物,是不是也可以通过自身体能调理,也会恢复? 这也是生活中常见的一种误区。
在这里提一下,任何一个结果的得出,都需要经过科学的试验。科学的标准包括以下几点:

  1. 研究的必须是实证可解的问题;
  2. 方法上要遵循系统的实证主义;
  3. 研究结论是公开知识
  4. 必须可以伪证

赌徒谬误

一个赌徒在赌场上连续输钱,就会产生一种感觉,我下一局赢的概率就会很大。这就是所谓的赌徒谬误。
或者,我们投掷一枚硬币,在连续6次中,都是正面朝上,那么我们会感觉,下一次反面朝上的概率会很大,这也是常见的赌徒谬误。
每一个概率事件都是随机的,相互独立的。历史的结果不会影响到现在的结果,历史的结果是沉没成本,不会影响后续的结果。

相关推不出因果关系

我们在公众号或者微博每天会看到各种文章,某个人成功了是自律带来的、因为好读书而读书等等类似于这类的文章,这些文章是没有太多营养价值的。通过一个小小的故事,强加因果关系,最后得出一个无用的结论。
从心理上说,人们有解释偶然事件的倾向,这一现象在心理学的研究中称为错觉相关。当人们相信两个事件在通常情况下应该同时发生时,就会认为自己频繁地看到了同时发生的现象,甚至当这两个事件的同时出现是随机的,并不比任何其他两个事件同时发生的频率更高时也是如此。简言之,即使是面对随机事件,人们也倾向于看到他们所期望的关联。
这些文章也是在利用我们的误区,强加归因,也符合我们的大脑逻辑,也是符合我们大脑期望的,因为自律最后成功了。世俗智慧通常包含许多一厢情愿的想法:人们更愿意相信世界是他们所期望的样子,而非其真实的样子。

非黑即白

我们也会看到很多这样的观点,要么…,要么…的观点,只有两个选择,非黑即白。过度绝对化,其实还有很多中间态。比如很多的文章和信息都会用穷人和富人,成功者和失败者来做主题,这样来做对立面,来挑动我们的情绪,让我们站在对立的角度来相互抨击、情绪化等等。
典型的非黑即白,其实是有很多中间态的,作者故意通过对立面来带来关注和话题。

选择性偏差

有时候我们也会犯一些选择性偏差的错误。比如一些文章会通过调查问卷来做论证的论据,拿出一些数据来支持论点,可能会更有说服力。但是这时候如果抽样调查的数据来源产生选择性偏差,结论也是值得怀疑的。比如通过调研大学生消费水平得出全国大学生整体消费水平的预测。如果抽样调查的数据来源只是一线城市的,结论是靠不住的。
从心理学角度,选择性偏差非常容易出现的原因。“选择性偏差”这个术语指的是特定主体和环境变量之间的关系,当不同生理、行为、心理特点的人们选择不同类型的环境时,就有可能出现选择性偏差。选择性偏差造成环境特征和行为—生物特征之间的虚假相关。

小心故事

很多广告商、公众号、微博深知这个道理,我们的大脑结构喜欢故事,于是很容易被这些类的文章故事所吸引。
从心理学的角度上来说,我们都是社会动物,我们经常会被第一人称的故事或别人的亲身经历所动摇。尽管从统计学的角度看,这是错误的,我们应该学会去克服它,大多数人却没能做到这一点。广告商深知这一点,这就是为什么我们总能在电视上看到许多个人评价类的广告:“喝了这种酸奶后,我两个星期减掉了20磅(1磅约等于0.454千克)——它真的很美味”,或者“我经常头痛,我以为自己肯定好不了了。我会朝狗大叫,会呵斥我的亲人。自从我开始服用这种药之后,我又回归了正常生活”。相比那些枯燥、无聊的统计数据,我们的大脑更专注于生动的社会经验。
所以在故事面前,要小心,特别注意了,别掉进别人为你设置的陷阱里面。

代表性启发

例如在一次聚会上,如果与你谈话的人衣服上有美国国旗翻领胸针,很懂政治、被美国特工处追踪,那么你会认为她是一位内阁成员,因为她拥有内阁成员的所有特质。但是你忘了基础概率。全美一共有85万名医生,但仅仅只有15位内阁成员。在这85万名医生中,一定会有人佩戴美国国旗翻领胸针、懂政治,甚至出于某种原因会被美国特工处追踪。


认知心理学试验已经告诉我们,做出判断和决定的时候,我们通常会遗忘基数,反而会相信医学术语。
这种推理错误是如此的根深蒂固。它的意思是某些有代表性的人或情形会有效压倒我们大脑的推理能力,让我们忽视数据或基数信息。
人类大脑及其结构最有的两大特质:丰富性及联想访问性。丰富性是指人类所思考或经历的许多事物都存储在大脑的某个位置。联想访问性指人类的思维可以以许多不同的方式进行访问,可以是语义访问,也可以是感知联想访问——一些相关的文字、类别名称、味道、一首老歌、一张老照片,甚至一些能触发人类意识的随意的神经活动都可能触发人类的记忆。
上述的物品,激发了我们大脑的联想,我们从大脑中提取信息,从而进行了归纳处理,所以得出上述的结果。
后续我们在生活中做决策时,要小心这些陷阱,后面会谈到。

记忆可得行

我们做出的许多判断都是以记忆为基础的,即在做判断时虽然手头上没有必要的信息作为依据,但是我们可以利用过去习得并存储于长时记忆中的相关信息。这种简单的联想思维被称为可得性启发式(availabilityheuristic),我们依赖于简便的检索提取来应对名目繁多的判断任务。

问题
探测记忆
提取与探测器想联系的项目
评估回忆的便捷性回忆数量和流畅性
估计频率或概率

正如,我们看到了最近飞机事故的新闻,那么如果我们最近要出游的话,就可能会不考虑飞机出行。


在这个情境中,如果我们记忆所记住的信息是有偏差的话,则会影响到最后的判断结果。首先,存储于长时记忆中的事件样本(被记住的信息)可能出现偏差,;其次,作为提取基石的记忆线索可能出现偏差,这样一来,即使总体是有代表性的,也会生成有偏的样本。最后,记忆中的事件可能具有不同的凸显性或生动性,以至于某些更凸显的事件主导着提取便捷性。这些因素单独或共同存在,都有可能会使以记忆为基础的判断结果产生系统性偏差。

想象可得行

对孩子来说,以下两个事件哪个更具威胁性:在家里藏一支枪还是建一个游泳池?即使你无法想起任何一个先例,也总是很容易就想象到孩子在家里翻出枪然后伤害到自己的画面,而不可能第一直觉是一具漂浮在游泳池里的尸体。或者请想象一个由10人组成的小组,然后凭直觉估计从小组中选出2人组成一组,会有多少种组合方法?之后再估计选出8人组成一组,有多少种组合。人们通常对前者的估计大于后者,因为人们会认为从10人组中选出2个人成组比选出8个人成组要简单得多,而且做出这种估计并不需要在心里罗列出所有的组合,仅凭直觉我们就已经形成这一印象,人们会感觉两两成对要比8人成组更容易实现。实际上,8人成组的数目与2人成组的数目完全相同,纯逻辑运算可以证实这样的结果。每一次从10人组中选出2个人成组,都会留下另外8个人形成另一个组。所以2人组与8人组是一一对应的关系;甚至无须任何公式即可推出它们数目相等的结论。很明显,“想象”在判断可能性时存在着缺陷


这就是所谓的想象可得行,影响到了我们对频率的估计偏差。

相似性判断

佩内罗珀是一个大学生,朋友们形容她稍微有些不切实际、情绪化和敏感化。她游遍了整个欧洲,能说一口流利的法语和意大利语。她目前还不确定毕业后的职业发展方向,但是却已经证明过自己高水平的才能,并且多次获得书法比赛的奖项。她在男朋友过生日时写了首十四行诗作为礼物。你认为佩内罗珀的主修专业是什么?
●心理学
●艺术史
大部分人按照我们的诱导,相当肯定地认为佩内罗珀是一个艺术史学生。她似乎恰好符合我们概念中艺术史学生的特点。
而结果,心理学专业在大学本科生中的基准概率约为0.13,即随机挑选一个学生其主修心理专业的概率为13%,而艺术史专业的基准概率是0.0008,两者比率为150比1![若仅限于女性的话,该比率为140比1])。许多人在明确了这些问题之后改变了最初的选择。他们意识到无论“人格描写”如何,那个人是(从18000个人中挑出的)15个艺术史学生之一的概率总是非常低的。


这个例子说明在分类判断任务中存在一种普遍倾向,即依据我们对类别的概念与待归类客体、情境或事件印象的相似性来做出判断。与基于可得性的判断一样,相似性自动地发生在判断过程并自发地主导判断任务。依赖相似性判断的主要行为特征是人们在情境中没有抓住重要的统计或逻辑结构,并且忽略了一些相关信息(例如,背景、基准概率,如佩内罗珀问题中大学各专业的总人数)。
我们在思考大部分日常概念时往往考虑的是关联性、典型性和相关性属性,而不仅仅是分类的本质定义。
在这类的问题中,我们都忽略了概率问题,都是从直觉来判断,而直觉的信息又来自于我们的记忆,我们的记忆存储是有偏差的。

基于锚定值的判断决策

在一项实验中,老师组织在教室里拍卖葡萄酒、书、高级巧克力等平均市场价格在70美元左右的商品。每卖一个商品,都要求学生们先看一下自己社会保险号的后两位数字,然后问他们是否愿意为这个商品支付同样数额的价格。例如,你的社会保险号后两个数字是85,你会被问到:你是否愿意为一瓶葡萄酒支付85美元?当学生们被锚定在自己的社会保险号后,实验者要求他们说出一个自己愿意为每个产品支付的价格。锚定在社会保险号后的出价,与正常的出价有着显著差异。社会保险号后两位数组成的数值与最终的出价之间的平均相关系数趋近于+0.40;社保号后两位数值大的学生(8099)为葡萄酒平均出价39美元,而数值小的学生(0019)平均出价12美元。Ariely和他的同事将这种效应称为“随机一致性”,因为这个随机产生的数值设定了学生们出价的大致等级。但是对于每一个人,不同消费品的出价高低具有一致的顺序。(对于这一组学生而言,无线键盘的出价一致性地高,而高档巧克力的出价一致性地低。)然而,虽然不同消费品出价的高低顺序具有一致性,但绝对价格却严重地受到这个随意给定锚的影响。


通常,我们对频率和概率的估计,甚至对结果是否符合期望的估计都是模糊的。在这种模糊情境下,如果有一个“锚”作为估计起点,就可以产生戏剧性效果。人们会根据这个所谓的“锚”对自己的评估进行调整,不过估计的结果却不会离“锚”太远。当采用这种方法整合信息时,通常会出现“调整不足”(underadjust)的现象。
下面是锚定决策调整过程:

问题
搜集更多证据
选择最重要的证据
提取信息
是否是第一条信息
锚定于该信息
调整最初的估计
是否有更多信息
报告结果

合取概率谬误

人们相信多个事件联合发生的可能性要大于各独立事件,Tversky和Kahnemay(1983)将这种信念称之为合取谬误(conjunctionfallacy)。更确切地说,应是合取概率谬误。
合取概率对理性的违背是广泛的。当我们设想未来时,想象的内容倾向于符合我们自身的知识架构。我们设想的许多情景是若干个特定事件的联合,因此,我们会认为该情景发生的可能性更高。同理,这种信念也是自动形成的。人类的思维过程有一种视觉化的倾向,我们对于未来的预期会通过“看到”自己和他人可能会做什么来实现。因此,人类的想象是相当具体形象的。我们知道,几乎没有任何事情会精确地像我们想象的那样成为现实,但这并不会阻止我们按照一定的序列构建关于未来的生动情景。

例如当人们被问及:“一个酒精成瘾、每天五分之一的时间都在喝酒的网球明星,赢得8个月后一个大型锦标赛的可能性有多大?”,他们十有八九会认为非常不可能。如果问另外一些人“一个酒精成瘾、每天五分之一的时间都在喝酒的网球明星,一月后加入一个戒酒协会,并戒掉了酒瘾,然后赢得8个月后一个大型锦标赛的可能性有多大?”,大多数人会认为有一定可能性
如果上述每个事件独立的话,那么:
P(A)=p1p2
P(B)=p1
p2*P3
很显然,A的概率更大,可能性更高一些,为何我们会不有自由的选择了第二个。这就是所谓的合取谬误。
从心理上说,人类总有一种想要解释发生在身边的各类事情的冲动,该冲动体现了一种一般适应性的习惯——维持当前情境中有用的、有助于生存的心理模型。但许多预先编撰的情景或情节也很容易进入到我们的想象中,这是因为它们可能对应着我们头脑中的某些原型脚本或是某些过去的经历,从而提高了它们的可得性。[此类可得性(availability)并不一定基于事件发生的实际频次,详见第5章]。在这里,可得性指的是我们通过想象可得到的,而非事实上可得到的,因为从逻辑上推论,我们对联合事件的体验频次不可能高于单个事件。尽管如此,想象力对我们的情感、思维和行动起着决定性作用。

我们该怎么办?

欢迎留言讨论

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页