泊松分布和指数分布

一、泊松分布

日常生活中,大量事件是有固定频率的。
* 一本书一页上的印刷错误数目
* 一手机某一时间段内收到信息的次数
* 某放射物体在一定时间内放射出粒子数目
* 一定的时间区间内进入某书亭的人数
* 某医院平均每小时出生3个婴儿
* 某公司平均每10分钟接到1个电话
* 某超市平均每天销售4包xx牌奶粉
* 某网站平均每分钟有2次访问
它们的特点就是,我们可以预估这些事件的总数,但是没法知道具体的发生时间。已知平均每小时出生3个婴儿,请问下一个小时,会出生几个?
有可能一下子出生6个,也有可能一个都不出生。这是我们没法知道的。

因此泊松分布就是描述某段时间内,事件具体的发生概率。
这里写图片描述
**上面就是泊松分布的公式。等号的左边,P 表示概率,N表示某种函数关系,t 表示时间,n 表示数量,1小时内出生3个婴儿的概率,就表示为 P(N(1) = 3) 。等号的右边,λ 表示事件的频率。
接下来两个小时,一个婴儿都不出生的概率是0.25%,基本不可能发生。**
这里写图片描述

接下来一个小时,至少出生两个婴儿的概率是80%。
这里写图片描述

泊松分布的图形大概是下面的样子。
这里写图片描述
可以看到,在频率附近,事件的发生概率最高,然后向两边对称下降,即变得越大和越小都不太可能。每小时出生3个婴儿,这是最可能的结果,出生得越多或越少,就越不可能。

二、指数分布

指数分布是事件的时间间隔的概率。下面这些都属于指数分布。
* 婴儿出生的时间间隔
* 来电的时间间隔
* 奶粉销售的时间间隔
* 网站访问的时间间隔
指数分布的公式可以从泊松分布推断出来。如果下一个婴儿要间隔时间 t ,就等同于 t 之内没有任何婴儿出生。
这里写图片描述
反过来,事件在时间 t 之内发生的概率,就是1减去上面的值。
这里写图片描述
接下来15分钟,会有婴儿出生的概率是52.76%。
这里写图片描述
接下来的15分钟到30分钟,会有婴儿出生的概率是24.92%。
这里写图片描述
指数分布的图形大概是下面的样子。
这里写图片描述
可以看到,随着间隔时间变长,事件的发生概率急剧下降,呈指数式衰减。想一想,如果每小时平均出生3个婴儿,上面已经算过了,下一个婴儿间隔2小时才出生的概率是0.25%,那么间隔3小时、间隔4小时的概率,是不是更接近于0?

三、总结

泊松分布是单位时间内独立事件发生次数的概率分布,指数分布是独立事件的时间间隔的概率分布。

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页